Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.4 The Cross Product - Exercises - Page 678: 50

Answer

Using the formula for the cross product, we obtain $\left( {\lambda {\bf{v}}} \right) \times {\bf{w}} = \lambda \left( {{\bf{v}} \times {\bf{w}}} \right)$

Work Step by Step

Let the components of ${\bf{v}}$ and ${\bf{w}}$ be given by ${\bf{v}} = \left( {{v_1},{v_2},{v_3}} \right)$ and ${\bf{w}} = \left( {{w_1},{w_2},{w_3}} \right)$, respectively. So, $\lambda {\bf{v}} = \left( {\lambda {v_1},\lambda {v_2},\lambda {v_3}} \right)$. Using the formula for the cross product, we have $\left( {\lambda {\bf{v}}} \right) \times {\bf{w}} = \left| {\begin{array}{*{20}{c}} {\bf{i}}&{\bf{j}}&{\bf{k}}\\ {\lambda {v_1}}&{\lambda {v_2}}&{\lambda {v_3}}\\ {{w_1}}&{{w_2}}&{{w_3}} \end{array}} \right|$ $\left( {\lambda {\bf{v}}} \right) \times {\bf{w}} = \left| {\begin{array}{*{20}{c}} {\lambda {v_2}}&{\lambda {v_3}}\\ {{w_2}}&{{w_3}} \end{array}} \right|{\bf{i}} - \left| {\begin{array}{*{20}{c}} {\lambda {v_1}}&{\lambda {v_3}}\\ {{w_1}}&{{w_3}} \end{array}} \right|{\bf{j}} + \left| {\begin{array}{*{20}{c}} {\lambda {v_1}}&{\lambda {v_2}}\\ {{w_1}}&{{w_2}} \end{array}} \right|{\bf{k}}$ $\left( {\lambda {\bf{v}}} \right) \times {\bf{w}} = \left( {\lambda {v_2}{w_3} - \lambda {v_3}{w_2}} \right){\bf{i}} - \left( {\lambda {v_1}{w_3} - \lambda {v_3}{w_1}} \right){\bf{j}} + \left( {\lambda {v_1}{w_2} - \lambda {v_2}{w_1}} \right){\bf{k}}$ $\left( {\lambda {\bf{v}}} \right) \times {\bf{w}} = \lambda \left( {\left( {{v_2}{w_3} - {v_3}{w_2}} \right){\bf{i}} - \left( {{v_1}{w_3} - {v_3}{w_1}} \right){\bf{j}} + \left( {{v_1}{w_2} - {v_2}{w_1}} \right){\bf{k}}} \right)$ From Exercise 49, we have ${\bf{v}} \times {\bf{w}} = \left( {{v_2}{w_3} - {v_3}{w_2}} \right){\bf{i}} - \left( {{v_1}{w_3} - {v_3}{w_1}} \right){\bf{j}} + \left( {{v_1}{w_2} - {v_2}{w_1}} \right){\bf{k}}$ Therefore, $\left( {\lambda {\bf{v}}} \right) \times {\bf{w}} = \lambda \left( {{\bf{v}} \times {\bf{w}}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.