Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 13 - Vector Geometry - 13.4 The Cross Product - Exercises - Page 678: 48

Answer

Choose: ${\bf{a}} = \left( {3,0,1} \right)$ ${\bf{b}} = \left( {1,1,1} \right)$ ${\bf{c}} = \left( { - 2,1,0} \right)$ ${\bf{a}} \times {\bf{b}} = {\bf{a}} \times {\bf{c}} \ne {\bf{0}}$ but ${\bf{b}} \ne {\bf{c}}$.

Work Step by Step

We have the conditions: ${\bf{a}} \times {\bf{b}} = {\bf{a}} \times {\bf{c}} \ne {\bf{0}}$ but ${\bf{b}} \ne {\bf{c}}$. Write ${\bf{a}} \times {\bf{b}} - {\bf{a}} \times {\bf{c}} = {\bf{0}}$ ${\bf{a}} \times \left( {{\bf{b}} - {\bf{c}}} \right) = {\bf{0}}$ This implies that the vector ${\bf{b}} - {\bf{c}}$ is parallel to ${\bf{a}}$. We may choose ${\bf{a}} = {\bf{b}} - {\bf{c}}$. For instance: ${\bf{b}} = \left( {1,1,1} \right)$, ${\bf{c}} = \left( { - 2,1,0} \right)$, so ${\bf{a}} = {\bf{b}} - {\bf{c}} = \left( {1,1,1} \right) - \left( { - 2,1,0} \right) = \left( {3,0,1} \right)$ Let us verify this: ${\bf{a}} \times {\bf{b}} = \left( {3,0,1} \right) \times \left( {1,1,1} \right) = \left( { - 1, - 2,3} \right)$ ${\bf{a}} \times {\bf{c}} = \left( {3,0,1} \right) \times \left( { - 2,1,0} \right) = \left( { - 1, - 2,3} \right)$ Thus, ${\bf{a}} \times {\bf{b}} = {\bf{a}} \times {\bf{c}} \ne {\bf{0}}$ but ${\bf{b}} \ne {\bf{c}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.