Answer
$$4$$
Work Step by Step
Given $$\sum_{n=0}^{n=\infty} 5\left(\frac{-1}{4}\right)^{n}=5+\left(\frac{-1}{4}\right)+5\left(\frac{-1}{4}\right)^{2}+5\left(\frac{-1}{4}\right)^{3}+\dots $$
Since the series is a geometric series with $|r|= \frac{1}{4}<1$, then the series converges and has the sum
\begin{align*}
S &=\frac{a_1}{1-r} \\
&=\frac{5}{1-\frac{-1}{4}} \\
&=4
\end{align*}