Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.2 Summing and Infinite Series - Exercises - Page 547: 13

Answer

$\frac{1}{2}$

Work Step by Step

$S_{3}$ = $\frac{1}{2}(\frac{1}{1}-\frac{1}{3})+\frac{1}{2}(\frac{1}{3}-\frac{1}{5})+\frac{1}{2}(\frac{1}{5}-\frac{1}{7})$ = $\frac{3}{7}$ $S_{4}$ = $\frac{1}{2}(\frac{1}{1}-\frac{1}{3})+\frac{1}{2}(\frac{1}{3}-\frac{1}{5})+\frac{1}{2}(\frac{1}{5}-\frac{1}{7})+\frac{1}{2}(\frac{1}{7}-\frac{1}{9})$ = $\frac{4}{9}$ $S_{5}$ = $\frac{1}{2}(\frac{1}{1}-\frac{1}{3})+\frac{1}{2}(\frac{1}{3}-\frac{1}{5})+\frac{1}{2}(\frac{1}{5}-\frac{1}{7})+\frac{1}{2}(\frac{1}{7}-\frac{1}{9})+\frac{1}{2}(\frac{1}{9}-\frac{1}{11})$ = $\frac{5}{11}$ $S_{N}$ = $\frac{1}{2}(\frac{1}{1}-\frac{1}{3})+\frac{1}{2}(\frac{1}{3}-\frac{1}{5})+\frac{1}{2}(\frac{1}{5}-\frac{1}{7})+\frac{1}{2}(\frac{1}{7}-\frac{1}{9})+\frac{1}{2}(\frac{1}{9}-\frac{1}{11})+...+\frac{1}{2}(\frac{1}{2N-1}-\frac{1}{2N+1})$ = $\frac{1}{2}(1-\frac{1}{2N+1})$ $S$ = $\lim\limits_{N \to \infty}S_{N}$ = $\lim\limits_{N \to \infty}\frac{1}{2}(1-\frac{1}{2N+1})$ = $\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.