Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.2 Summing and Infinite Series - Exercises - Page 547: 11

Answer

$\frac{1}{2}$

Work Step by Step

$S_{3}$ = $(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{5})$ = $\frac{3}{10}$ $S_{4}$ = $(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{6})$ = $\frac{1}{3}$ $S_{5}$ = $(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})$ = $\frac{5}{14}$ $S_{N}$ = $(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+(\frac{1}{4}-\frac{1}{5})+...+(\frac{1}{N+1}-\frac{1}{N+2})$ = $\frac{1}{2}-\frac{1}{N+2}$ $S$ = $\lim\limits_{N \to \infty}S_{N}$ = $\lim\limits_{N \to \infty}(\frac{1}{2}-\frac{1}{N+2})$ = $\frac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.