Answer
$$\frac{64}{25}$$
Work Step by Step
Given
$$\frac{4^{3}}{5^{3}}+\frac{4^{4}}{5^{4}}+\frac{4^{5}}{5^{5}}+\cdots$$
Since the series is a geometric series with $|r|=\left|\frac{4}{5}\right|<1$ , then the series converges and has the sum
\begin{align*}
S&= \frac{a_1}{1-r}\\
&=\frac{\frac{4^{3}}{5^{3}}}{1-\frac{4}{5}}\\
&= \frac{4^{3}}{5^{2}}=\frac{64}{25}
\end{align*}