Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.2 Summing and Infinite Series - Exercises - Page 547: 14

Answer

$\frac{11}{18}$

Work Step by Step

$\frac{1}{n(n+3)}$ = $\frac{A}{n}+\frac{B}{n+3}$ $1$ = $A(n+3)+Bn$ $A$ = $\frac{1}{3}$ $B$ = $-\frac{1}{3}$ $\frac{1}{n(n+3)}$ = $\frac{1}{3}(\frac{1}{n}-\frac{1}{n+3})$ $\Sigma_{n=1}^{\infty}\frac{1}{n(n+3)}$ = $\Sigma_{n=1}^{\infty}\frac{1}{3}(\frac{1}{n}-\frac{1}{n+3})$ $S_{N}$ = $\frac{1}{3}(1-\frac{1}{4})+\frac{1}{3}(\frac{1}{2}-\frac{1}{5})+\frac{1}{3}(\frac{1}{3}-\frac{1}{6})+...+\frac{1}{3}(\frac{1}{N}-\frac{1}{N+3})$ = $\frac{11}{18}-\frac{1}{3}(\frac{1}{N+1}+\frac{1}{N+2}+\frac{1}{N+3})$ $\lim\limits_{N \to \infty}S_{N}$ = $\lim\limits_{N \to \infty}[\frac{11}{18}-\frac{1}{3}(\frac{1}{N+1}+\frac{1}{N+2}+\frac{1}{N+3})]$ = $\frac{11}{18}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.