Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 537: 6

Answer

\begin{array}{lclcl} b_1=1&\\ b_2=2&\\ b_3=\frac{5}{2}&\\ b_4=\frac{29}{10}&\\ \end{array}

Work Step by Step

Given $$ b_1=1, \ \ \ b_n=b_{n-1}+\frac{1}{b_{n-1}}, \ \ \ \ \ \ n= 2,3, \dots $$ So, we get \begin{array}{|l|l|}\hline & n& \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b_n \\ \\ \hline \text{First Term} & 1 & b_1=1 \\ \\ \hline \text{Second Term} & 2 & b_2=b_{2-1}+\frac{1}{b_{2-1}}=b_{1}+\frac{1}{b_{1}}=1+\frac{1}{1}=2\\ \\ \hline \text{Third Term} & 3 & b_3=b_{3-1}+\frac{1}{b_{3-1}}=b_{2}+\frac{1}{b_{2}}=2+\frac{1}{2}=\frac{5}{2}\\ \\ \hline \text{Fourth Term} & 4 & b_4=b_{4-1}+\frac{1}{b_{4-1}}=b_{3}+\frac{1}{b_{3}}=\frac{5}{2}+\frac{1}{\frac{5}{2}}=\frac{5}{2}+\frac{2}{5}=\frac{29}{10}\\ \\ \hline \end{array}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.