Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 537: 2

Answer

(a) ${b_1} = {a_2} = \frac{1}{3}$, ${b_2} = {a_3} = \frac{1}{5}$, ${b_3} = {a_4} = \frac{1}{7}$ (b) ${c_1} = {a_4} = \frac{1}{7}$, ${c_2} = {a_5} = \frac{1}{9}$, ${c_3} = {a_6} = \frac{1}{{11}}$ (c) ${d_1} = {a_1}^2 = 1$, ${d_2} = {a_2}^2 = \frac{1}{9}$, ${d_3} = {a_3}^2 = \frac{1}{{25}}$ (d) ${e_1} = 2{a_1} - {a_2} = \frac{5}{3}$, ${e_2} = 2{a_2} - {a_3} = \frac{7}{{15}}$, ${e_3} = 2{a_3} - {a_4} = \frac{9}{{35}}$

Work Step by Step

(a) ${a_{n + 1}}$ for $n=1,2,3$: ${a_2} = \frac{1}{{2\cdot2 - 1}} = \frac{1}{3}$, ${a_3} = \frac{1}{{2\cdot3 - 1}} = \frac{1}{5}$, ${a_4} = \frac{1}{{2\cdot4 - 1}} = \frac{1}{7}$. Since ${b_n} = {a_{n + 1}}$, so ${b_1} = {a_2} = \frac{1}{3}$, ${b_2} = {a_3} = \frac{1}{5}$, ${b_3} = {a_4} = \frac{1}{7}$. (b) ${a_{n + 3}}$ for $n=1,2,3$: ${a_4} = \frac{1}{{2\cdot4 - 1}} = \frac{1}{7}$, ${a_5} = \frac{1}{{2\cdot5 - 1}} = \frac{1}{9}$, ${a_6} = \frac{1}{{2\cdot6 - 1}} = \frac{1}{{11}}$. Since ${c_n} = {a_{n + 3}}$, so ${c_1} = {a_4} = \frac{1}{7}$, ${c_2} = {a_5} = \frac{1}{9}$, ${c_3} = {a_6} = \frac{1}{{11}}$. (c) ${a_n}^2$ for $n=1,2,3$: ${a_1}^2 = {\left( {\frac{1}{{2\cdot1 - 1}}} \right)^2} = 1$, ${a_2}^2 = {\left( {\frac{1}{{2\cdot2 - 1}}} \right)^2} = \frac{1}{9}$, ${a_3}^2 = {\left( {\frac{1}{{2\cdot3 - 1}}} \right)^2} = \frac{1}{{25}}$. Since ${d_n} = {a_n}^2$, so ${d_1} = {a_1}^2 = 1$, ${d_2} = {a_2}^2 = \frac{1}{9}$, ${d_3} = {a_3}^2 = \frac{1}{{25}}$. (d) $2{a_n} - {a_{n + 1}}$ for $n=1,2,3$: $2{a_1} - {a_2} = 2\left( {\frac{1}{{2\cdot1 - 1}}} \right) - \left( {\frac{1}{{2\cdot2 - 1}}} \right) = 2 - \frac{1}{3} = \frac{5}{3}$, $2{a_2} - {a_3} = 2\left( {\frac{1}{{2\cdot2 - 1}}} \right) - \left( {\frac{1}{{2\cdot3 - 1}}} \right) = \frac{2}{3} - \frac{1}{5} = \frac{7}{{15}}$, $2{a_3} - {a_4} = 2\left( {\frac{1}{{2\cdot3 - 1}}} \right) - \left( {\frac{1}{{2\cdot4 - 1}}} \right) = \frac{2}{5} - \frac{1}{7} = \frac{9}{{35}}$. Since ${e_n} = 2{a_n} - {a_{n + 1}}$, so ${e_1} = 2{a_1} - {a_2} = \frac{5}{3}$, ${e_2} = 2{a_2} - {a_3} = \frac{7}{{15}}$, ${e_3} = 2{a_3} - {a_4} = \frac{9}{{35}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.