Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 11 - Infinite Series - 11.1 Sequences - Exercises - Page 537: 14

Answer

(a) $\mathop {\lim }\limits_{n \to \infty } \left( {{a_n} + {b_n}} \right) = 11$ (b) $\mathop {\lim }\limits_{n \to \infty } {a_n}^3 = 64$ (c) $\mathop {\lim }\limits_{n \to \infty } \cos \left( {\pi {b_n}} \right) = - 1$ (d) $\mathop {\lim }\limits_{n \to \infty } \left( {{a_n}^2 - 2{a_n}{b_n}} \right) = - 40$

Work Step by Step

(a) By (i) of Theorem 2 (Limit Laws for Sequences): $\mathop {\lim }\limits_{n \to \infty } \left( {{a_n} + {b_n}} \right) = \mathop {\lim }\limits_{n \to \infty } {a_n} + \mathop {\lim }\limits_{n \to \infty } {b_n} = 4 + 7 = 11$ (b) By (ii) of Theorem 2 (Limit Laws for Sequences): $\mathop {\lim }\limits_{n \to \infty } {a_n}^3 = \left( {\mathop {\lim }\limits_{n \to \infty } {a_n}} \right)\left( {\mathop {\lim }\limits_{n \to \infty } {a_n}} \right)\left( {\mathop {\lim }\limits_{n \to \infty } {a_n}} \right) = {\left( {\mathop {\lim }\limits_{n \to \infty } {a_n}} \right)^3} = {4^3} = 64$ (c) We may define a function $f$ such that $f\left( {{b_n}} \right) = \cos \left( {\pi {b_n}} \right)$. So, by Theorem 4: $\mathop {\lim }\limits_{n \to \infty } \cos \left( {\pi {b_n}} \right) = \cos \left( {\mathop {\lim }\limits_{n \to \infty } \pi {b_n}} \right) = \cos \left( {\pi \mathop {\lim }\limits_{n \to \infty } {b_n}} \right) = \cos \left( {7\pi } \right) = - 1$ (d) By (i) and (ii) of Theorem 2 (Limit Laws for Sequences): $\mathop {\lim }\limits_{n \to \infty } \left( {{a_n}^2 - 2{a_n}{b_n}} \right) = \mathop {\lim }\limits_{n \to \infty } {a_n}^2 - 2\mathop {\lim }\limits_{n \to \infty } {a_n}{b_n} = {\left( {\mathop {\lim }\limits_{n \to \infty } {a_n}} \right)^2} - 2\left( {\mathop {\lim }\limits_{n \to \infty } {a_n}} \right)\left( {\mathop {\lim }\limits_{n \to \infty } {b_n}} \right)$ $\mathop {\lim }\limits_{n \to \infty } \left( {{a_n}^2 - 2{a_n}{b_n}} \right) = {4^2} - 2\cdot4\cdot7 = - 40$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.