Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Differentiation - 3.2 Exercises - Page 174: 35

Answer

$a.\quad y=-x+3$ $b.\displaystyle \quad c=\frac{1}{2}$ $c.\quad y=-x+5.25$ $ d.\quad$ See image

Work Step by Step

(a) Slope $m=\displaystyle \frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\displaystyle \frac{1-4}{2+1}=-1$ Secant line:$\qquad y-y_{1}=m(x-x_{1})$ $y-4=-(x+1)$ $y=-x+3$ (b) If $f$ is continuous on the closed interval $[a, b]$ and differentiable on the open interval $(a, b)$ , then there exists a number $c$ in $(a, b)$ such that$ f^{\prime}(c)=\displaystyle \frac{f(b)-f(a)}{b-a}.$ $f^{\prime}(x)=-2x$ $f^{\prime}(x)=m$ $-2x=-1$ $x=\displaystyle \frac{1}{2} \qquad(c=\frac{1}{2})$ (c) $f(c)=f(\displaystyle \frac{1}{2})=-\frac{1}{4}+5=\frac{19}{4}$ Tangent point: $(\displaystyle \frac{1}{2},\frac{19}{4})$ Tangent line: $\qquad y-y_{1}=m(x-x_{1})$ $y-\displaystyle \frac{19}{4}=-(x-\frac{1}{2})$ $4y-19=-4x+2$ $4y=-4x+21$ $y=-x+5.25$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.