Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Differentiation - 3.2 Exercises - Page 174: 28

Answer

a. $\quad C(3)=C(6)=\displaystyle \frac{25}{3}$ b. $\quad\approx 410$ components

Work Step by Step

(a) $C(3)=10(\displaystyle \frac{1}{3}+\frac{3}{3+3})=\frac{25}{3}$ $C(5)=10(\displaystyle \frac{1}{6}+\frac{6}{6+3})=\frac{25}{3}$ $C(3)=C(6)=\displaystyle \frac{25}{3}$ (b) $... $there must be a value x=c in the interval such that $C^{\prime}(x)=0$ $C(x)=10(x^{-1}+x(x+3)^{-1})$ $C^{\prime}(x)=10[-x^{-2}+(1\cdot(x+3)^{-1}+x\cdot(-1)(x+3)^{-2}\cdot 1)$ $=10(-\displaystyle \frac{1}{x^{2}}+\frac{1}{x+3}-\frac{x}{(x+3)^{2}})$ $=10(-\displaystyle \frac{1}{x^{2}}+\frac{x+3-x}{(x+3)^{2}})$ $=10(-\displaystyle \frac{1}{x^{2}}+\frac{3}{(x+3)^{2}})$ $10(-\displaystyle \frac{1}{x^{2}}+\frac{3}{(x+3)^{2}})=0$ $\displaystyle \frac{3}{x^{2}+6x+9}=\frac{1}{x^{2}}$ $3x^{2}=x^{2}+6x+9$ $2x^{2}-6x-9=0$ $x=\displaystyle \frac{6\pm\sqrt{108}}{4}$ $=\displaystyle \frac{6\pm 6\sqrt{3}}{4}$ $=\displaystyle \frac{3\pm 3\sqrt{3}}{2}$ We take the value in the interval $(3, 6)$, $c=\displaystyle \frac{3+3\sqrt{3}}{2}\approx 4.098$ The order size is in hundreds, so this is amounts to $\approx 410$ components
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.