Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Differentiation - 3.2 Exercises - Page 174: 8

Answer

$f'(x)=0$ for $x=-\dfrac{2}{3}.$

Work Step by Step

$f(x)=-3x\sqrt{x+1}\to$ The intercepts are $x=-1$ and $x=0.$ Applying Rolle's Theorem over the interval $[-1, 0]$ guarantees the existence of at least one value $c$ such that $-1\lt c\lt 0$ and $f'(c)=0.$ Product Rule $(f’(x)=(u(x)(v(x))’=u’(x)v(x)+u(x)v’(x))$ $u(x)=-3x ;u’(x)= -3$ $v(x)=\sqrt{x+1} ;v’(x)= \dfrac{1}{2\sqrt{x+1}}$ $f'(x)=(-3)(\sqrt{x+1})+(-3x)(\dfrac{1}{2\sqrt{x+1}})=\dfrac{-9x-6}{2\sqrt{x+1}}.$ $f'(x)=0\to \dfrac{-9x-6}{2\sqrt{x+1}}=0\to-9x-6=0\to c=-\dfrac{2}{3}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.