Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.9 Exercises - Page 237: 46

Answer

$$f\left( {x + \Delta x} \right) \approx 0 + 1\left( {0.05} \right)$$

Work Step by Step

$$\eqalign{ & \tan 0.05 \cr & {\text{Using }}f\left( x \right) = \tan x \cr & {\text{Differentiating}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\tan x} \right] \cr & f'\left( x \right) = {\sec ^2}x \cr & {\text{Using the formula}} \cr & f\left( {x + \Delta x} \right) \approx f\left( x \right) + f'\left( x \right)dx \cr & {\text{We can write,}} \cr & f\left( {x + \Delta x} \right) \approx \tan x + {\sec ^2}xdx \cr & f\left( {x + \Delta x} \right) = \tan 0.05 \cr & {\text{Now, choosing }}x = 0{\text{ and }}dx = 0.05,{\text{ and substituting }} \cr & f\left( {x + \Delta x} \right) \approx \tan \left( 0 \right) + {\sec ^2}\left( 0 \right)\left( {0.05} \right) \cr & f\left( {x + \Delta x} \right) \approx 0 + 1\left( {0.05} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.