Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.9 Exercises - Page 237: 37

Answer

$$\eqalign{ & f\left( {x + \Delta x} \right) \approx 9.97 \cr & \sqrt {99.4} \approx 9.969954 \cr} $$

Work Step by Step

$$\eqalign{ & \sqrt {99.4} \cr & {\text{Using }}f\left( x \right) = \sqrt x \cr & {\text{Differentiating}} \cr & f'\left( x \right) = \frac{1}{{2\sqrt x }} \cr & {\text{Using the formula}} \cr & f\left( {x + \Delta x} \right) \approx f\left( x \right) + f'\left( x \right)dx \cr & {\text{We can write,}} \cr & f\left( {x + \Delta x} \right) \approx \sqrt x + \frac{1}{{2\sqrt x }}dx \cr & f\left( {x + \Delta x} \right) = \sqrt {99.4} \cr & {\text{Now, choosing }}x = 100{\text{ and }}dx = - 0.6,{\text{ and substituting }} \cr & f\left( {x + \Delta x} \right) = \sqrt {99.4} \approx \sqrt {100} + \frac{1}{{2\sqrt {100} }}\left( { - 0.6} \right) \cr & f\left( {x + \Delta x} \right) \approx 10 + \frac{1}{{20}}\left( { - 0.6} \right) \cr & f\left( {x + \Delta x} \right) \approx 9.97 \cr & \cr & {\text{*Using a calculator to obtain }}\sqrt {99.4} \cr & \sqrt {99.4} \approx 9.969954 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.