Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.9 Exercises - Page 237: 38

Answer

$$\eqalign{ & f\left( {x + \Delta x} \right) \approx 2.962962 \cr & \root 3 \of {26} \approx 2.96249 \cr} $$

Work Step by Step

$$\eqalign{ & \root 3 \of {26} \cr & {\text{Using }}f\left( x \right) = \root 3 \of x \cr & f\left( x \right) = {x^{1/3}} \cr & {\text{Differentiating}} \cr & f'\left( x \right) = \frac{1}{3}{x^{ - 2/3}} \cr & f'\left( x \right) = \frac{1}{{3\root 3 \of {{x^2}} }} \cr & {\text{Using the formula}} \cr & f\left( {x + \Delta x} \right) \approx f\left( x \right) + f'\left( x \right)dx \cr & {\text{We can write,}} \cr & f\left( {x + \Delta x} \right) \approx \root 3 \of x + \frac{1}{{3\root 3 \of {{x^2}} }}dx \cr & f\left( {x + \Delta x} \right) = \root 3 \of {26} \cr & {\text{Now, choosing }}x = 27{\text{ and }}dx = - 1,{\text{ and substituting }} \cr & f\left( {x + \Delta x} \right) = \root 3 \of {26} \approx \root 3 \of {27} + \frac{1}{{3\root 3 \of {{{\left( {27} \right)}^2}} }}\left( { - 1} \right) \cr & f\left( {x + \Delta x} \right) \approx 3 - \frac{1}{{27}} \cr & f\left( {x + \Delta x} \right) \approx 2.962962 \cr & \cr & {\text{*Using a calculator to obtain }}\root 3 \of {26} \cr & \root 3 \of {26} \approx 2.96249 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.