Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.9 Exercises - Page 237: 40

Answer

$$\eqalign{ & f\left( {x + \Delta x} \right) = 26.73 \cr & {\left( {2.99} \right)^3} \approx 26.7308 \cr} $$

Work Step by Step

$$\eqalign{ & {\left( {2.99} \right)^3} = {\left( {3 - 0.01} \right)^3} \cr & {\text{Using }}f\left( x \right) = {x^3} \cr & {\text{Differentiating}} \cr & f'\left( x \right) = 3{x^2} \cr & {\text{Using the formula}} \cr & f\left( {x + \Delta x} \right) \approx f\left( x \right) + f'\left( x \right)dx \cr & {\text{We can write}}{\text{,}} \cr & f\left( {x + \Delta x} \right) \approx {x^3} + 3{x^2}dx{\text{ }}\left( {\bf{1}} \right) \cr & f\left( {x + \Delta x} \right) = {\left( {2.99} \right)^3} \cr & {\text{Now}}{\text{, choosing }}x = 3{\text{ and }}dx = - 0.01,{\text{ and substituting into }}\left( {\bf{1}} \right) \cr & f\left( {x + \Delta x} \right) = {\left( 3 \right)^3} \approx {\left( 3 \right)^3} + 3{\left( 3 \right)^2}\left( { - 0.01} \right) \cr & f\left( {x + \Delta x} \right) = {\left( 3 \right)^3} + 3{\left( 3 \right)^2}\left( { - 0.01} \right) \cr & f\left( {x + \Delta x} \right) = 26.73 \cr & {\left( {2.99} \right)^3} \approx 26.7308 \cr & \cr & {\text{*Using a calculator to obtain }}{\left( {2.99} \right)^3} \cr & {\left( {2.99} \right)^3} \approx 26.7308 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.