Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.9 Exercises - Page 237: 42

Answer

$$\eqalign{ & f\left( x \right) = \tan x \cr & {\text{The linear approximation at the point }}\left( {0,0} \right){\text{ is}} \to y = x \cr} $$

Work Step by Step

$$\eqalign{ & {\text{Let }}f\left( x \right) = \tan x,{\text{ then}} \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {\tan x} \right] \cr & f'\left( x \right) = {\sec ^2}x \cr & \cr & {\text{The tangent line at the point }}\left( {c,f\left( c \right)} \right){\text{ is}} \cr & y = f\left( c \right) + f'\left( c \right)\left( {x - c} \right) \cr & {\text{We have the point }}\left( {0,0} \right) \cr & y = 0 + {\sec ^2}\left( 0 \right)\left( {x - 0} \right) \cr & y = 0 + 1\left( {x - 0} \right) \cr & y = x \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.