Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 3 - Applications of Differentiation - 3.9 Exercises - Page 237: 45

Answer

$$f\left( {x + \Delta x} \right) \approx 2 + \frac{1}{4}\left( {0.02} \right)$$

Work Step by Step

$$\eqalign{ & \sqrt {4.02} \cr & {\text{Using }}f\left( x \right) = \sqrt x \cr & {\text{Differentiating}} \cr & f'\left( x \right) = \frac{1}{{2\sqrt x }} \cr & {\text{Using the formula}} \cr & f\left( {x + \Delta x} \right) \approx f\left( x \right) + f'\left( x \right)dx \cr & {\text{We can write,}} \cr & f\left( {x + \Delta x} \right) \approx \sqrt x + \frac{1}{{2\sqrt x }}dx \cr & f\left( {x + \Delta x} \right) = \sqrt {4.02} \cr & {\text{Now, choosing }}x = 4{\text{ and }}dx = 0.02,{\text{ and substituting }} \cr & f\left( {x + \Delta x} \right) = \sqrt {4.02} \approx \sqrt 4 + \frac{1}{{2\sqrt 4 }}\left( {0.02} \right) \cr & f\left( {x + \Delta x} \right) \approx 2 + \frac{1}{4}\left( {0.02} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.