Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.3 Exercises - Page 128: 137

Answer

$$ \begin{aligned} \frac{d}{d x}[f(x) g(x) h(x)] &=\frac{d}{d x}[(f(x) g(x)) h(x)] \\ &=\frac{d}{d x}[f(x) g(x)] h(x)+f(x) g(x) h^{\prime}(x) \\ &=\left[f(x) g^{\prime}(x)+g(x) f^{\prime}(x)\right] h(x)+f(x) g(x) h^{\prime}(x) \\ &=f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x) \end{aligned} $$

Work Step by Step

$$ \begin{aligned} \frac{d}{d x}[f(x) g(x) h(x)] &=\frac{d}{d x}[(f(x) g(x)) h(x)] \\ &=\frac{d}{d x}[f(x) g(x)] h(x)+f(x) g(x) h^{\prime}(x) \\ &=\left[f(x) g^{\prime}(x)+g(x) f^{\prime}(x)\right] h(x)+f(x) g(x) h^{\prime}(x) \\ &=f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x) \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.