Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.3 Exercises - Page 128: 122

Answer

Let $f( x)$ is a differentiable function then we have $$ x f(x)]^{\prime}=x f^{\prime}(x)+f(x)' $$ $$ \begin{aligned} x f(x)]^{\prime \prime} &=x f^{\prime \prime}(x)+f^{\prime}(x)+f^{\prime}(x) \\ &=x f^{\prime \prime}(x)+2 f^{\prime}(x), \end{aligned} $$ and $$ \begin{aligned} x f(x)]^{\prime \prime \prime} &=x f^{\prime \prime \prime}(x)+f^{\prime \prime}(x)+2 f^{\prime \prime}(x) \\ & =x f^{\prime \prime \prime}(x)+3 f^{\prime \prime}(x), \end{aligned} $$ and so on. In general, we get: $$ [x f(x)]^{(n)}=x f^{(n)}(x)+n f^{(n-1)}(x). $$

Work Step by Step

Let $f( x)$ is a differentiable function then we have $$ x f(x)]^{\prime}=x f^{\prime}(x)+f(x)' $$ $$ \begin{aligned} x f(x)]^{\prime \prime} &=x f^{\prime \prime}(x)+f^{\prime}(x)+f^{\prime}(x) \\ &=x f^{\prime \prime}(x)+2 f^{\prime}(x), \end{aligned} $$ and $$ \begin{aligned} x f(x)]^{\prime \prime \prime} &=x f^{\prime \prime \prime}(x)+f^{\prime \prime}(x)+2 f^{\prime \prime}(x) \\ & =x f^{\prime \prime \prime}(x)+3 f^{\prime \prime}(x), \end{aligned} $$ and so on. In general,we get: $$ [x f(x)]^{(n)}=x f^{(n)}(x)+n f^{(n-1)}(x). $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.