Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.3 Exercises - Page 128: 123

Answer

$$ f(x)=x^{n} \sin x $$ we can find $$ f^{\prime}(x)=x^{n} \cos x+n x^{n-1} \sin x $$ If $ n=1 $ then we have: $$ f^{\prime}(x)=x \cos x+\sin x $$ If $ n=2 $ then we have: $$ f^{\prime}(x)=x^{2} \cos x+2 \sin x $$ If $ n=3 $ then we have: $$ f^{\prime}(x)=x^{4} \cos x+3 x^{2} \sin x $$ If $ n=4 $ then we have: $$ f^{\prime}(x)=x^{4} \cos x+4 x^{3} \sin x $$ For general n, $$ f^{\prime}(x)=x^{n} \cos x+n x^{n-1} \sin x $$

Work Step by Step

$$ f(x)=x^{n} \sin x $$ we can find $$ f^{\prime}(x)=x^{n} \cos x+n x^{n-1} \sin x $$ If $ n=1 $ then we have: $$ f^{\prime}(x)=x \cos x+\sin x $$ If $ n=2 $ then we have: $$ f^{\prime}(x)=x^{2} \cos x+2 \sin x $$ If $ n=3 $ then we have: $$ f^{\prime}(x)=x^{4} \cos x+3 x^{2} \sin x $$ If $ n=4 $ then we have: $$ f^{\prime}(x)=x^{4} \cos x+4 x^{3} \sin x $$ For general n, a general rule for $ f^{\prime}(x)$ in terms of n is $$ f^{\prime}(x)=x^{n} \cos x+n x^{n-1} \sin x $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.