Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 2 - Differentiation - 2.3 Exercises - Page 128: 124

Answer

$$ f(x) =\frac{\cos x}{x^{n}}=x^{-n} \cos x $$ we can find $$ \begin{aligned} f^{\prime}(x) &=-x^{-n} \sin x-n x^{-n-1} \cos x \\ &=-x^{-n-1}(x \sin x+n \cos x) \\ &=-\frac{x \sin x+n \cos x}{x^{n+1}} \end{aligned} $$ If $ n=1 $ then we have: $$ f^{\prime}(x)=-\frac{x \sin x+\cos x}{x^{2}} $$ If $ n=2 $ then we have: $$ f^{\prime}(x)=-\frac{x \sin x+2 \cos x}{x^{3}} $$ If $ n=3 $ then we have: $$ f^{\prime}(x)=-\frac{x \sin x+3 \cos x}{x^{4}} $$ If $ n=4 $ then we have: $$ f^{\prime}(x)=-\frac{x \sin x+4 \cos x}{x^{5}} $$ For general n, a general rule for $f^{\prime}(x) $ in terms of n is : $$ f^{\prime}(x)=-\frac{x \sin x+n \cos x}{x^{n+1}} $$

Work Step by Step

$$ f(x) =\frac{\cos x}{x^{n}}=x^{-n} \cos x $$ we can find $$ \begin{aligned} f^{\prime}(x) &=-x^{-n} \sin x-n x^{-n-1} \cos x \\ &=-x^{-n-1}(x \sin x+n \cos x) \\ &=-\frac{x \sin x+n \cos x}{x^{n+1}} \end{aligned} $$ If $ n=1 $ then we have: $$ f^{\prime}(x)=-\frac{x \sin x+\cos x}{x^{2}} $$ If $ n=2 $ then we have: $$ f^{\prime}(x)=-\frac{x \sin x+2 \cos x}{x^{3}} $$ If $ n=3 $ then we have: $$ f^{\prime}(x)=-\frac{x \sin x+3 \cos x}{x^{4}} $$ If $ n=4 $ then we have: $$ f^{\prime}(x)=-\frac{x \sin x+4 \cos x}{x^{5}} $$ For general n, a general rule for $f^{\prime}(x) $ in terms of n is : $$ f^{\prime}(x)=-\frac{x \sin x+n \cos x}{x^{n+1}} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.