Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 514: 47

Answer

$$\frac{\pi }{6}$$

Work Step by Step

$$\eqalign{ & \int_1^2 {\frac{{dx}}{{\sqrt {4x - {x^2}} }}} \cr & {\text{completing the square for }}4x - {x^2} \cr & 4x - {x^2} = - \left( {{x^2} - 4x + 4} \right) + 4 \cr & 4x - {x^2} = 4 - {\left( {x - 2} \right)^2} \cr & \int_1^2 {\frac{{dx}}{{\sqrt {4x - {x^2}} }}} = \int_1^2 {\frac{{dx}}{{\sqrt {4 - {{\left( {x - 2} \right)}^2}} }}} \cr & \cr & {\text{Write in terms of }}\theta \cr & {\text{substitute }}x - 2 = 2\sin \theta ,{\text{ }}\,\,\,dx = 2\cos \theta d\theta \cr & \,\,\,\,\theta = {\sin ^{ - 1}}\left( {\frac{{x - 2}}{2}} \right) \cr & \,\,\,\,x = 2 \to \theta = 0 \cr & \,\,\,\,x = 1 \to \theta = - \pi /6 \cr & \int_1^2 {\frac{{dx}}{{\sqrt {4 - {{\left( {x - 2} \right)}^2}} }}} = \int_{ - \pi /6}^0 {\frac{{2\cos \theta d\theta }}{{\sqrt {4 - 4{{\sin }^2}\theta } }}} \cr & = \int_{ - \pi /6}^0 {\frac{{2\cos \theta d\theta }}{{2\sqrt {1 - {{\sin }^2}\theta } }}} \cr & = \int_{ - \pi /6}^0 {\frac{{2\cos \theta d\theta }}{{2\sqrt {{{\cos }^2}\theta } }}} \cr & = \int_{ - \pi /6}^0 {d\theta } \cr & = \left( \theta \right)_{ - \pi /6}^0 \cr & \cr & {\text{Evaluate the limits}} \cr & = 0 - \left( { - \frac{\pi }{6}} \right) \cr & = \frac{\pi }{6} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.