Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 514: 44

Answer

$$\ln \left| {\frac{{\sqrt {1 + {e^x} + {e^{2x}}} }}{2} + \frac{{{e^x} + 1/2}}{{\sqrt 3 /2}}} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^x}}}{{\sqrt {1 + {e^x} + {e^{2x}}} }}} dx \cr & {\text{completing the square for }}1 + {e^x} + {e^{2x}} \cr & 1 + {e^x} + {e^{2x}} = {e^{2x}} + {e^x} + \frac{1}{4} + \frac{3}{4} \cr & 1 + {e^x} + {e^{2x}} = {\left( {{e^x} + \frac{1}{2}} \right)^2} + \frac{3}{4} \cr & \int {\frac{{{e^x}}}{{\sqrt {1 + {e^x} + {e^{2x}}} }}} dx = \int {\frac{{{e^x}}}{{\sqrt {{{\left( {{e^x} + 1/2} \right)}^2} + 3/4} }}} dx \cr & \cr & {\text{Write in terms of }}\theta \cr & {\text{substitute }}{e^x} + \frac{1}{2} = \frac{{\sqrt 3 }}{2}\tan \theta ,{\text{ }}\,\,{e^x}\,dx = \frac{{\sqrt 3 }}{2}{\sec ^2}\theta d\theta \cr & \int {\frac{{{e^x}}}{{\sqrt {{{\left( {{e^x} + 1/2} \right)}^2} + 3/4} }}} dx = \int {\frac{{\left( {\sqrt 3 /2} \right){{\sec }^2}\theta d\theta }}{{\sqrt {{{\left( {\left( {\sqrt 3 /2} \right)\tan \theta - 1/2 + 1/2} \right)}^2} + 3/4} }}} \cr & = \int {\frac{{\left( {\sqrt 3 /2} \right){{\sec }^2}\theta d\theta }}{{\sqrt {{{\left( {\left( {\sqrt 3 /2} \right)\tan \theta } \right)}^2} + 3/4} }}} \cr & = \int {\frac{{\left( {\sqrt 3 /2} \right){{\sec }^2}\theta d\theta }}{{\sqrt {\left( {3/4} \right){{\tan }^2}\theta + 3/4} }}} \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{\sqrt {{{\tan }^2}\theta + 1} }}} \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{\sqrt {{{\sec }^2}\theta } }}} \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{\sec \theta }}} \cr & = \int {\sec \theta } d\theta \cr & {\text{Integrate}} \cr & = \ln \left| {\sec \theta + \tan \theta } \right| + C \cr & \cr & {\text{Where }}\sec \theta = \frac{{\sqrt {1 + {e^x} + {e^{2x}}} }}{2}{\text{,}}\,{\text{ and tan}}\theta = \frac{{{e^x} + 1/2}}{{\sqrt 3 /2}} \cr & = \ln \left| {\frac{{\sqrt {1 + {e^x} + {e^{2x}}} }}{2} + \frac{{{e^x} + 1/2}}{{\sqrt 3 /2}}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.