Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 514: 43

Answer

$$2{\sin ^{ - 1}}\left( {\frac{{x + 1}}{2}} \right) + \frac{1}{2}\left( {x + 1} \right)\sqrt {3 - 2x - {x^2}} + C$$

Work Step by Step

$$\eqalign{ & \int {\sqrt {3 - 2x - {x^2}} } dx \cr & {\text{completing the square for }}3 - 2x - {x^2} \cr & 3 - 2x - {x^2} = - \left( {{x^2} + 2x + 1} \right) + 4 \cr & 3 - 2x - {x^2} = 4 - {\left( {x + 1} \right)^2} \cr & \int {\sqrt {3 - 2x - {x^2}} } dx = \int {\sqrt {4 - {{\left( {x + 1} \right)}^2}} } dx \cr & \cr & {\text{Write in terms of }}\theta \cr & {\text{substitute }}x + 1 = 2\sin \theta ,{\text{ }}\,\,\,dx = 2\cos \theta d\theta \cr & \int {\sqrt {4 - {{\left( {x + 1} \right)}^2}} } dx = \int {\sqrt {4 - {{\left( {2\sin \theta - 1 + 1} \right)}^2}} } \left( {2\cos \theta d\theta } \right) \cr & = \int {\sqrt {4 - {{\left( {2\sin \theta } \right)}^2}} } \left( {2\cos \theta d\theta } \right) \cr & = 2\int {\sqrt {4 - 4{{\sin }^2}\theta } } \cos \theta d\theta \cr & = 4\int {\sqrt {1 - {{\sin }^2}\theta } } \cos \theta d\theta \cr & = 4\int {\sqrt {{{\cos }^2}\theta } } \cos \theta d\theta \cr & = 4\int {{{\cos }^2}} \theta d\theta \cr & = 2\int {\left( {1 + \cos 2\theta } \right)} d\theta \cr & {\text{Integrate}} \cr & = 2\left( {\theta + \frac{1}{2}\sin 2\theta } \right) + C \cr & = 2\theta + \sin 2\theta + C \cr & = 2\theta + 2\sin \theta \cos \theta + C \cr & \cr & {\text{Where sin}}\theta = \frac{{x + 1}}{2}{\text{,}}\,{\text{ and cos}}\theta = \frac{{\sqrt {4 - {{\left( {x + 1} \right)}^2}} }}{2} \cr & = 2{\sin ^{ - 1}}\left( {\frac{{x + 1}}{2}} \right) + 2\left( {\frac{{x + 1}}{2}} \right)\left( {\frac{{\sqrt {4 - {{\left( {x + 1} \right)}^2}} }}{2}} \right) + C \cr & = 2{\sin ^{ - 1}}\left( {\frac{{x + 1}}{2}} \right) + \frac{1}{2}\left( {x + 1} \right)\sqrt {3 - 2x - {x^2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.