Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 514: 37

Answer

$${\tan ^{ - 1}}\left( {x - 2} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{{x^2} - 4x + 5}}} \cr & {\text{completing the square}} \cr & \int {\frac{{dx}}{{{x^2} - 4x + 5}}} = \int {\frac{{dx}}{{{x^2} - 4x + 4 + 1}}} \cr & = \int {\frac{{dx}}{{{{\left( {x - 2} \right)}^2} + 1}}} \cr & \cr & {\text{Write in terms of }}\theta \cr & {\text{substitute }}x = \tan \theta + 2,{\text{ }}\,\,\,dx = {\sec ^2}\theta d\theta \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{{{\left( {\tan \theta + 2 - 2} \right)}^2} + 1}}} \cr & = \int {\frac{{{{\sec }^2}\theta d\theta }}{{{{\tan }^2}\theta + 1}}} \cr & = \int {\frac{{{{\sec }^2}\theta }}{{{{\sec }^2}\theta }}} d\theta \cr & = \int {d\theta } \cr & {\text{Integrate}} \cr & = \theta + C \cr & \cr & {\text{Where }}x = \tan \theta + 2 \to \theta = {\tan ^{ - 1}}\left( {x - 2} \right) \cr & = {\tan ^{ - 1}}\left( {x - 2} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.