Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 514: 41

Answer

$$\ln \left| {\sqrt {{{\left( {x - 3} \right)}^2} + 1} + x - 3} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {{x^2} - 6x + 10} }}} \cr & {\text{completing the square for }}{x^2} - 6x + 10 \cr & {x^2} - 6x + 10 = \left( {{x^2} - 6x + 9} \right) + 1 \cr & {x^2} - 6x + 10 = {\left( {x - 3} \right)^2} + 1 \cr & \int {\frac{{dx}}{{\sqrt {{x^2} - 6x + 10} }}} = \int {\frac{{dx}}{{\sqrt {{{\left( {x - 3} \right)}^2} + 1} }}} \cr & \cr & {\text{Write in terms of }}\theta \cr & {\text{substitute }}x - 3 = \tan \theta ,{\text{ }}\,\,\,dx = {\sec ^2}\theta d\theta \cr & \int {\frac{{dx}}{{\sqrt {{{\left( {x - 3} \right)}^2} + 1} }}} = \int {\frac{{{{\sec }^2}\theta }}{{\sqrt {{{\tan }^2}\theta + 1} }}d\theta } \cr & = \int {\frac{{{{\sec }^2}\theta }}{{\sqrt {{{\sec }^2}\theta } }}d\theta } \cr & = \int {\sec \theta d\theta } \cr & {\text{Integrate}} \cr & = \ln \left| {\sec \theta + \tan \theta } \right| + C \cr & \cr & {\text{Where }}x - 3 = \tan \theta {\text{ and sec}}\theta = \sqrt {{{\left( {x - 3} \right)}^2} + 1} \cr & = \ln \left| {\sqrt {{{\left( {x - 3} \right)}^2} + 1} + x - 3} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.