Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.4 Trigonometric Substitutions - Exercises Set 7.4 - Page 514: 38

Answer

$${\sin ^{ - 1}}\left( {x - 1} \right) + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{dx}}{{\sqrt {2x - {x^2}} }}} \cr & {\text{completing the square for }}2x - {x^2} \cr & 2x - {x^2} = - \left( {{x^2} - 2x + 1} \right) + 1 \cr & 2x - {x^2} = 1 - {\left( {x - 1} \right)^2} \cr & \int {\frac{{dx}}{{\sqrt {2x - {x^2}} }}} = \int {\frac{{dx}}{{\sqrt {1 - {{\left( {x - 1} \right)}^2}} }}} \cr & \cr & {\text{Write in terms of }}\theta \cr & {\text{substitute }}x = \sin \theta + 1,{\text{ }}\,\,\,dx = \cos \theta d\theta \cr & = \int {\frac{{\cos \theta d\theta }}{{\sqrt {1 - {{\left( {\sin \theta + 1 - 1} \right)}^2}} }}} \cr & = \int {\frac{{\cos \theta d\theta }}{{\sqrt {1 - {{\sin }^2}\theta } }}} \cr & = \int {\frac{{\cos \theta d\theta }}{{\sqrt {{{\cos }^2}\theta } }}} \cr & = \int {d\theta } \cr & {\text{Integrate}} \cr & = \theta + C \cr & \cr & {\text{Where }}x = \sin \theta + 1 \to \theta = {\sin ^{ - 1}}\left( {x - 1} \right) \cr & = {\sin ^{ - 1}}\left( {x - 1} \right) + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.