Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 499: 60

Answer

$$0$$

Work Step by Step

$$\eqalign{ & \int_{ - \pi /\omega }^{\pi /\omega } {t\sin \left( {k\omega t} \right)} dt \cr & {\text{Integrate by parts}} \cr & u = t{\text{ }} \Rightarrow {\text{ }}du = dt \cr & dv = \sin \left( {k\omega t} \right)dt{\text{ }} \Rightarrow {\text{ }}v = - \frac{1}{{k\omega }}\cos \left( {k\omega t} \right) \cr & \int {t\sin \left( {k\omega t} \right)} dt = - \frac{t}{{k\omega }}\cos \left( {k\omega t} \right) + \int {\frac{1}{{k\omega }}\cos \left( {k\omega t} \right)} dt \cr & {\text{ }} = - \frac{t}{{k\omega }}\cos \left( {k\omega t} \right) + \frac{1}{{{{\left( {k\omega } \right)}^2}}}\sin \left( {k\omega t} \right) + C \cr & {\text{Therefore,}} \cr & \int_{ - \pi /\omega }^{\pi /\omega } {t\sin \left( {k\omega t} \right)} dt = \left[ { - \frac{t}{{k\omega }}\cos \left( {k\omega t} \right) + \frac{1}{{{{\left( {k\omega } \right)}^2}}}\sin \left( {k\omega t} \right)} \right]_{ - \pi /\omega }^{\pi /\omega } \cr & {\text{Evaluating}} \cr & = \left[ { - \frac{t}{{k\omega }}\cos \left( {k\omega \left( {\frac{\pi }{\omega }} \right)} \right) + \frac{1}{{{{\left( {k\omega } \right)}^2}}}\sin \left( {k\omega \left( {\frac{\pi }{\omega }} \right)} \right)} \right] \cr & - \left[ { - \frac{t}{{k\omega }}\cos \left( {k\omega \left( { - \frac{\pi }{\omega }} \right)} \right) + \frac{1}{{{{\left( {k\omega } \right)}^2}}}\sin \left( {k\omega \left( { - \frac{\pi }{\omega }} \right)} \right)} \right] \cr & {\text{Simplifying}} \cr & = \left[ { - \frac{t}{{k\omega }}\cos \left( {k\pi } \right) + \frac{1}{{{{\left( {k\omega } \right)}^2}}}\sin \left( {k\pi } \right)} \right] \cr & - \left[ { - \frac{t}{{k\omega }}\cos \left( { - \pi k} \right) + \frac{1}{{{{\left( {k\omega } \right)}^2}}}\sin \left( {k\omega \left( { - \pi k} \right)} \right)} \right] \cr & {\text{Then}} \cr & = \left[ { - \frac{t}{{k\omega }}\cos \left( {k\pi } \right)} \right] - \left[ { - \frac{t}{{k\omega }}\cos \left( {\pi k} \right)} \right] \cr & = - \frac{t}{{k\omega }}\cos \left( {k\pi } \right) + \frac{t}{{k\omega }}\cos \left( {\pi k} \right) \cr & = 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.