Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 499: 49

Answer

$$ - 2{x^4}\cos 2x + 4{x^3}\sin 2x + 6{x^2}\cos 2x - 6x\sin 2x - 3\cos 2x + C$$

Work Step by Step

$$\eqalign{ & \int {4{x^4}\sin 2x} dx \cr & {\text{Evaluate using tabular integration by parts}} \cr & \frac{d}{{dx}}{\text{ }}\int {dx} \cr & 4{x^4}{\text{ + }}\sin 2x \cr & 16{x^3}{\text{ }} - {\text{ }} - \frac{1}{2}\cos 2x \cr & 48{x^2}{\text{ + }} - \frac{1}{4}\sin 2x \cr & 96x{\text{ }} - {\text{ }}\frac{1}{8}\cos 2x \cr & 96{\text{ + }}\frac{1}{{16}}\sin 2x \cr & {\text{0 }} - {\text{ }} - \frac{1}{{32}}\cos 2x \cr & \cr & {\text{Then,}} \cr & = \left( {4{x^4}{\text{ }}} \right)\left( + \right)\left( { - \frac{1}{2}\cos 2x} \right) + \left( {16{x^3}} \right)\left( - \right)\left( { - \frac{1}{4}\sin 2x} \right) \cr & + \left( {48{x^2}} \right)\left( + \right)\left( {\frac{1}{8}\cos 2x} \right) + 96x\left( - \right)\left( {\frac{1}{{16}}\sin 2x} \right) + 96\left( + \right)\left( { - \frac{1}{{32}}\cos 2x} \right) \cr & + C \cr & {\text{Simplifying}} \cr & = - 2{x^4}\cos 2x + 4{x^3}\sin 2x + 6{x^2}\cos 2x - 6x\sin 2x - 3\cos 2x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.