Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 499: 57

Answer

$$V = 2{\pi ^2}$$

Work Step by Step

$$\eqalign{ & y = \sin x{\text{ and }}y = 0{\text{ for the interval 0}} \leqslant x \leqslant \pi \cr & {\text{The volume is given by}} \cr & V = \int_a^b {2\pi xf\left( x \right)dx} \cr & V = 2\pi \int_0^\pi {x\sin xdx} \cr & {\text{Integrating by parts}} \cr & {\text{The volume is given by}} \cr & V = \int_a^b {2\pi xf\left( x \right)dx} \cr & V = 2\pi \int_0^\pi {x\sin xdx} \cr & {\text{Integrating by parts}} \cr & u = x,{\text{ }}du = dx \cr & dv = \sin xdx,{\text{ }}v = - \cos x \cr & \int {x\sin x} dx = - x\cos x + \int {\cos x} dx \cr & \int {x\sin xdx} = - x\cos x + \sin x + C \cr & {\text{Therefore,}} \cr & V = 2\pi \int_0^\pi {x\sin xdx} \cr & V = 2\pi \left[ { - x\cos x + \sin x} \right]_0^\pi \cr & V = 2\pi \left[ { - \pi \cos \pi + \sin \pi } \right] - 2\pi \left[ {0\cos 0 + \sin 0} \right] \cr & V = 2\pi \left[ \pi \right] - 2\pi \left[ 0 \right] \cr & V = 2{\pi ^2} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.