Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 499: 58

Answer

$$V = {\pi ^2} - 2\pi $$

Work Step by Step

$$\eqalign{ & y = \cos x{\text{ and }}y = 0{\text{ for the interval 0}} \leqslant x \leqslant \pi /2 \cr & {\text{The volume is given by}} \cr & V = \int_a^b {2\pi xf\left( x \right)dx} \cr & V = 2\pi \int_0^{\pi /2} {x\cos xdx} \cr & {\text{Integrating by parts}} \cr & u = x,{\text{ }}du = dx \cr & dv = \cos xdx,{\text{ }}v = \sin x \cr & \int {x\cos xdx} = x\sin x - \int {\sin x} dx \cr & \int {x\cos x} dx = x\sin x + \cos x + C \cr & {\text{Therefore,}} \cr & V = 2\pi \int_0^{\pi /2} {x\cos xdx} \cr & V = 2\pi \left[ {x\sin x - \sin x} \right]_0^{\pi /2} \cr & V = 2\pi \left[ {\frac{\pi }{2}\sin \left( {\frac{\pi }{2}} \right) + \cos \left( {\frac{\pi }{2}} \right)} \right] - 2\pi \left[ {0\sin \left( 0 \right) + \cos \left( 0 \right)} \right] \cr & V = 2\pi \left[ {\frac{\pi }{2}} \right] - 2\pi \left[ 1 \right] \cr & V = {\pi ^2} - 2\pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.