Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 499: 50

Answer

$$\frac{{{x^3}}}{3}{\left( {2x + 1} \right)^{3/2}} - \frac{1}{5}{x^2}{\left( {2x + 1} \right)^{5/2}} + \frac{2}{{32}}x{\left( {2x + 1} \right)^{7/2}} - \frac{2}{{315}}{\left( {2x + 1} \right)^{9/2}} + C$$

Work Step by Step

$$\eqalign{ & \int {{x^3}\sqrt {2x + 1} } dx \cr & {\text{Evaluate using tabular integration by parts}} \cr & \frac{d}{{dx}}{\text{ }}\int {dx} \cr & {x^3}{\text{ + }}\sqrt {2x + 1} \cr & 3{x^2}{\text{ }} - {\text{ }}\frac{1}{3}{\left( {2x + 1} \right)^{3/2}} \cr & 6x{\text{ + }}\frac{1}{{15}}{\left( {2x + 1} \right)^{5/2}} \cr & 6{\text{ }} - {\text{ }}\frac{1}{{105}}{\left( {2x + 1} \right)^{7/2}} \cr & {\text{0 + }}\frac{1}{{945}}{\left( {2x + 1} \right)^{9/2}} \cr & \cr & {\text{Then,}} \cr & = \frac{{{x^3}}}{3}{\left( {2x + 1} \right)^{3/2}} - \left( {\frac{1}{5}{x^2}} \right)\left( {{{\left( {2x + 1} \right)}^{5/2}}} \right) + 6x\left( {\frac{1}{{105}}{{\left( {2x + 1} \right)}^{7/2}}} \right) \cr & - 6\left( {\frac{1}{{945}}{{\left( {2x + 1} \right)}^{9/2}}} \right) + C \cr & {\text{Simplifying}} \cr & = \frac{{{x^3}}}{3}{\left( {2x + 1} \right)^{3/2}} - \frac{1}{5}{x^2}{\left( {2x + 1} \right)^{5/2}} + \frac{2}{{32}}x{\left( {2x + 1} \right)^{7/2}} - \frac{2}{{315}}{\left( {2x + 1} \right)^{9/2}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.