Calculus, 10th Edition (Anton)

Published by Wiley
ISBN 10: 0-47064-772-8
ISBN 13: 978-0-47064-772-1

Chapter 7 - Principles Of Integral Evaluation - 7.2 Integration By Parts - Exercises Set 7.2 - Page 499: 48

Answer

\[ - {x^2}\cos x - x\cos x - 2x\sin x - \sin x + \cos x + C\]

Work Step by Step

$$\eqalign{ & \int {\left( {{x^2} + x + 1} \right)\sin xdx} \cr & {\text{Evaluate using tabular integration by parts}} \cr & \frac{d}{{dx}}{\text{ }}\int {dx} \cr & {x^2} + x + 1{\text{ + }}\sin x \cr & {\text{ }}2x + 1{\text{ }} - {\text{ }}\cos x \cr & {\text{ }}2{\text{ + }} - \sin x \cr & {\text{ 0 }} - {\text{ }} - \cos x \cr & {\text{Then,}} \cr & = \left( {{x^2} + x + 1} \right)\left( - \right)\left( {\cos x} \right) + \left( {2x + 1} \right)\left( + \right)\left( { - \sin x} \right) + \left( 2 \right)\left( - \right)\left( { - \cos x} \right) + C \cr & {\text{Simplifying}} \cr & = - \left( {{x^2} + x + 1} \right)\cos x - \left( {2x + 1} \right)\sin x + 2\cos x + C \cr & = - {x^2}\cos x - x\cos x - \cos x - 2x\sin x - \sin x + 2\cos x + C \cr & = - {x^2}\cos x - x\cos x - 2x\sin x - \sin x + \cos x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.