Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 266: 9

Answer

$\frac{{{x^2} - 1}}{{2x}}$

Work Step by Step

$$\eqalign{ & \sinh \left( {\ln x} \right) \cr & {\text{Use the definition of hyperbolic functions }} \cr & \sinh t = \frac{{{e^t} - {e^{ - t}}}}{2},{\text{ Let }}t = \ln x \cr & \sinh \left( {\ln x} \right) = \frac{{{e^{\ln x}} - {e^{ - \ln x}}}}{2} \cr & {\text{Using logarithmic properties }}n\ln x = {x^{ - n}} \cr & \sinh \left( {\ln x} \right) = \frac{{{e^{\ln x}} - {e^{\ln {x^{ - 1}}}}}}{2} \cr & {\text{Where }}{e^{\ln t}} = t \cr & \sinh \left( {\ln x} \right) = \frac{{x - 1/x}}{2} \cr & {\text{Simplifying}} \cr & \sinh \left( {\ln x} \right) = \frac{{\frac{{{x^2} - 1}}{x}}}{2} \cr & \sinh \left( {\ln x} \right) = \frac{{{x^2} - 1}}{{2x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.