Answer
(a) $sinh~1 = \frac{e^2-1}{2e}$
(b) $sinh^{-1}~1 = ln(1+\sqrt{2}) = 0.8813$
Work Step by Step
(a) $sinh~x = \frac{e^x-e^{-x}}{2}$
$sinh~1 = \frac{e^1-e^{-1}}{2}$
$sinh~1 = \frac{e-\frac{1}{e}}{2}$
$sinh~1 = \frac{\frac{e^2-1}{e}}{2}$
$sinh~1 = \frac{e^2-1}{2e}$
(b) $sinh^{-1}~x = ln(x+\sqrt{x^2+1})$
$sinh^{-1}~1 = ln(1+\sqrt{1^2+1})$
$sinh^{-1}~1 = ln(1+\sqrt{2})$
$sinh^{-1}~1 = 0.8813$