Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 266: 10

Answer

$\frac{{{x^8} + 1}}{{2{x^4}}}$

Work Step by Step

$$\eqalign{ & \cosh \left( {4\ln x} \right) \cr & {\text{Use the definition of hyperbolic functions }} \cr & \cosh t = \frac{{{e^t} + {e^{ - t}}}}{2},{\text{ Let }}t = 4\ln x \cr & \cosh \left( {4\ln x} \right) = \frac{{{e^{4\ln x}} + {e^{ - 4\ln x}}}}{2} \cr & {\text{Using logarithmic properties }}n\ln x = {x^{ - n}} \cr & \cosh \left( {4\ln x} \right) = \frac{{{e^{\ln {x^4}}} + {e^{\ln {x^{ - 4}}}}}}{2} \cr & {\text{Where }}{e^{\ln t}} = t \cr & \cosh \left( {4\ln x} \right) = \frac{{{x^4} + \frac{1}{{{x^4}}}}}{2} \cr & {\text{Simplifying}} \cr & \cosh \left( {4\ln x} \right) = \frac{{\frac{{{x^8} + 1}}{{{x^4}}}}}{2} \cr & \cosh \left( {4\ln x} \right) = \frac{{{x^8} + 1}}{{2{x^4}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.