Answer
cosh(x) + sinh(x) = $e^{x}$
Work Step by Step
Use the definition of the hyperbolical cosine and sin; the divisor is the same, so it becomes a fraction sum.
$$sinh(x) = \frac{e^{x} - e^{-x}}{2}$$ $$cosh(x) = \frac{e^{x} + e^{-x}}{2}$$ $ cosh(x) + sinh(x) = \frac{e^{x} - e^{-x}}{2} + \frac{e^{x} + e^{-x}}{2}$ = $\frac{2e^{x}}{2}$ = $e^{x}$