Calculus: Early Transcendentals 9th Edition

Published by Cengage Learning
ISBN 10: 1337613924
ISBN 13: 978-1-33761-392-7

Chapter 3 - Section 3.11 - Hyperbolic Functions - 3.11 Exercises - Page 266: 7

Answer

$\frac{{13}}{2}{e^x} - \frac{3}{2}{e^{ - x}}$

Work Step by Step

$$\eqalign{ & 8\sinh x + 5\cosh x \cr & {\text{Use the definition of hyperbolic functions }} \cr & \sinh x = \frac{{{e^x} - {e^{ - x}}}}{2}{\text{ and }}\cosh x = \frac{{{e^x} + {e^{ - x}}}}{2} \cr & {\text{Therefore}}{\text{,}} \cr & 8\sinh x + 5\cosh x = 8\left( {\frac{{{e^x} - {e^{ - x}}}}{2}} \right) + 5\left( {\frac{{{e^x} + {e^{ - x}}}}{2}} \right) \cr & {\text{Simplifying}} \cr & = 4\left( {{e^x} - {e^{ - x}}} \right) + \frac{5}{2}\left( {{e^x} + {e^{ - x}}} \right) \cr & = 4{e^x} - 4{e^{ - x}} + \frac{5}{2}{e^x} + \frac{5}{2}{e^{ - x}} \cr & = \frac{{13}}{2}{e^x} - \frac{3}{2}{e^{ - x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.