Elementary Technical Mathematics

Published by Brooks Cole
ISBN 10: 1285199197
ISBN 13: 978-1-28519-919-1

Chapter 6 - Section 6.9 - Reciprocal Formulas Using a Calculator - Exercises - Page 261: 19

Answer

$C=1.91*10^{-6}F$.

Work Step by Step

Given $\frac{1}{C}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$ $C=1.25*10^{-6}F, C_{1}=8.75*10^{-6}F, C_{2}=6.15*10^{-6}F,C_{3}=?$ $\frac{1}{1.25*10^{-6}}=\frac{1}{8.75*10^{-6}}+\frac{1}{6.15*10^{-6}}+\frac{1}{C_{3}}$ $\frac{1}{C_{3}}=\frac{10^{6}}{1.25}-(\frac{10^{6}}{8.75}+\frac{10^{6}}{6.15})$ (since $(a^{-b})^{-1}=a^{b})$ $\frac{1}{C_{3}}=10^{6}(\frac{1}{1.25}-(\frac{1}{8.75}+\frac{1}{6.15}))$ $\frac{1}{C_{3}}=\frac{1}{10^{-6}}(\frac{1}{1.9116})$ Therefore, $C=1.91*10^{-6}F$ How to use the calculator: $1.25,*,x^{-1},-,8.75,*,x^{-1},-,6.15,*,x^{-1},=,x^{-1},=.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.