Answer
{$\dfrac{7 - \sqrt{85}}{6},\dfrac{7 + \sqrt{85}}{6}$}
Work Step by Step
Quadratic formula suggests that $x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$
Given: $3x^2-7x=3$
This can be re-written as: $3x^2-7x-3=0$
Thus, $x=\dfrac{-(-7) \pm \sqrt{(-7)^2-4(3)(-3)}}{2(3)}$
or, $x=\dfrac{7 \pm \sqrt{85}}{6}$
or, $x=\dfrac{7 - \sqrt{85}}{6},\dfrac{7 + \sqrt{85}}{6}$
Our solution set is: {$\dfrac{7 - \sqrt{85}}{6},\dfrac{7 + \sqrt{85}}{6}$}