Answer
{$\dfrac{4}{3} - \dfrac{ \sqrt{5}}{3}i,\dfrac{4}{3} + \dfrac{ \sqrt{5}}{3}i$}
Work Step by Step
Quadratic formula suggests that $x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$
Since, $3x^2-8x+7=0$
Thus, $x=\dfrac{-(-8) \pm \sqrt{(-8)^2-4(3)(7)}}{2(3)}$
or, $x=\dfrac{8 \pm \sqrt{-20}}{2}$
or, $x=\dfrac{4}{3} \pm \dfrac{ \sqrt{5}}{3}i$
or, $x=\dfrac{4}{3} - \dfrac{ \sqrt{5}}{3}i,\dfrac{4}{3} + \dfrac{ \sqrt{5}}{3}i$
Our solution set is: {$\dfrac{4}{3} - \dfrac{ \sqrt{5}}{3}i,\dfrac{4}{3} + \dfrac{ \sqrt{5}}{3}i$}