Answer
{$2 - 2i,2 + 2i$} or, {$2(1-i),2(1+i)$}
Work Step by Step
Quadratic formula suggests that $x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$
Since, $x^2-4x+8=0$
Thus, $x=\dfrac{-(-4) \pm \sqrt{(-4)^2-4(1)(8)}}{2(1)}$
or, $x=\dfrac{4 \pm \sqrt{-16}}{2}$
or, $x=2 \pm 2i$
or, $x=2 - 2i,2 + 2i$
Our solution set is: {$2 - 2i,2 + 2i$} or, {$2(1-i),2(1+i)$}