Answer
{$\dfrac{2}{3} - \dfrac{ \sqrt{14}}{3}i,\dfrac{2}{3}+\dfrac{ \sqrt{14}}{3}i$}
Work Step by Step
Quadratic formula suggests that $x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}$
Since, $3x^2-4x+6=0$
Thus, $x=\dfrac{-(-4) \pm \sqrt{(-4)^2-4(3)(6)}}{2(3)}$
or, $x=\dfrac{4 \pm \sqrt{-56}}{6}$
or, $x=\dfrac{2}{3} \pm \dfrac{ \sqrt{14}}{3}i$
or, $x=\dfrac{2}{3} - \dfrac{ \sqrt{14}}{3}i,\dfrac{2}{3}+\dfrac{ \sqrt{14}}{3}i$
Our solution set is: {$\dfrac{2}{3} - \dfrac{ \sqrt{14}}{3}i,\dfrac{2}{3}+\dfrac{ \sqrt{14}}{3}i$}