Answer
$10x^7y^3z^3\sqrt {5y}$.
Work Step by Step
The given expression is
$=(-5x^2y^3z\sqrt {2xyz})(-x^4z\sqrt {10xz})$
Clear the parentheses.
$=5x^6y^3z^2\sqrt {2xyz}\sqrt {10xz}$
Apply the product rule of radicals.
$\sqrt a \cdot \sqrt b = \sqrt {ab}$
$=5x^6y^3z^2\sqrt {2xyz\cdot 10xz}$
Find the square factors.
$=5x^6y^3z^2\sqrt {2^25x^2yz^2}$
Factor into two radicals.
$=5x^6y^3z^2\sqrt {2^2x^2z^2}\sqrt {5y}$
Simplify.
$=5x^6y^3z^2\cdot 2xz\sqrt {5y}$
$=10x^7y^3z^3\sqrt {5y}$.