Answer
$-6x^3y^3 \sqrt[3] {2yz^2} $.
Work Step by Step
The given expression is
$=-2x^2y\left ( \sqrt[3] {54x^3y^7z^2} \right )$
Identify perfect cube factors.
$=-2x^2y\left ( \sqrt[3] {3^3\cdot2x^3y^3y^3yz^2} \right )$
Factor into two radicals.
$=-2x^2y\left ( \sqrt[3] {3^3x^3y^3y^3}\sqrt[3] {2yz^2} \right )$
$=-2x^2y\cdot 3xyy\left ( \sqrt[3] {2yz^2} \right )$
Simplify.
$=-6x^3y^3\left ( \sqrt[3] {2yz^2} \right )$.