Answer
$(x-3)^2\sqrt[4]{(x-3)^2}$
Work Step by Step
RECALL:
$\sqrt[n]{a^n}=a$
Factor the radicand (expression inside the radical sign) so that at least one factor is a perfect fourth power, and then use the rule above to simplify and obtain:
$=\sqrt[4]{(x-3)^{8+2}}
\\=\sqrt[4]{(x-3)^8 \cdot (x-3)^2}
\\=\sqrt[4]{\left((x-3)^2\right)^4\cdot(x-3)^2}
\\=(x-3)^2\sqrt[4]{(x-3)^2}$