Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.5 - Synthetic Division and the Remainder Theorem - Exercise Set - Page 453: 30

Answer

Remainder =0, Solution set =$\displaystyle \{-2,-\frac{3}{2},\frac{1}{2}\}$

Work Step by Step

Divide $2x^{3}-3x^{2}-11x+6\quad $with $x+2,\qquad (c=-2)$ $\begin{array}{rrrrrrrr} \underline{-2}| &2 & -3 & -11 &6 & & & & \\ & & -4 & 14 &-6 & & & & \\ & --& -- &-- &-- & & & & \\ & 2 & -7 & 3 & \fbox{0} & & & & \end{array}$ $\displaystyle \frac{dividend}{divisor}=quotient+\frac{remainder}{divisor}$, and the remainder is 0, so $\displaystyle \frac{2x^{3}-3x^{2}-11x+6}{(x+2)}=2x^{2}-7x+3 $ ... the trinomial on the RHS can be factored (two factors of $ac=6$ with sum $b=-7$ are $-1$ and $-6$. $2x^{2}-7x+3 =2x^{2}-x-6x+3 =x(2x-1)+3(2x-1)$ $=(2x-1)(2x+3)$ Thus, $\displaystyle \frac{2x^{3}-3x^{2}-11x+6}{(x+2)}=(2x-1)(2x+3)$ $2x^{3}-3x^{2}-11x+6=(x+2)(2x-1)(2x+3)$ The equation $2x^{3}-3x^{2}-11x+6=0$ becomes $(x+2)(2x-1)(2x+3)=0\quad$ ... apply the zero product principle Solution set =$\displaystyle \{-2,-\frac{3}{2},\frac{1}{2}\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.