Intermediate Algebra for College Students (7th Edition)

Published by Pearson
ISBN 10: 0-13417-894-7
ISBN 13: 978-0-13417-894-3

Chapter 6 - Section 6.5 - Synthetic Division and the Remainder Theorem - Exercise Set - Page 453: 29

Answer

Remainder = 0, Solution set =$\displaystyle \{-\frac{1}{2},1,2\}$

Work Step by Step

Divide $2x^{3}-5x^{2}+x+2\quad $with $x-2,\qquad (c=2)$ $\begin{array}{rrrrrrrr} \underline{2}| &2 & -5 & 1 & 2 & & & & \\ & & 4 & -2 &-2 & & & & \\ & --& -- &-- &-- & & & & \\ & 2 & -1 & -1 & \fbox{0} & & & & \end{array}$ $\displaystyle \frac{dividend}{divisor}=quotient+\frac{remainder}{divisor}$, and the remainder is 0, so $\displaystyle \frac{2x^{3}-5x^{2}+x+2}{(x-2)}=2x^{2}-x-1 $ ... the trinomial on the RHS can be factored (two factors of $-2$ with sum $-1$ are $+1$ and $-2$. $2x^{2}-x-1 =2x^{2}-2x+x-1 =2x(x-1)+(x-1)$ $=(x-1)(2x+1)$ Thus, $\displaystyle \frac{2x^{3}-5x^{2}+x+2}{(x-2)}=(x-1)(2x+1)$ $2x^{3}-5x^{2}+x+2=(x-2)(x-1)(2x+1)$ The equation $x^{3}-2x^{2}-x+2=0$ becomes $(2x+1) (x-2)(x-1)=0\quad$ ... apply the zero product principle Solution set =$\displaystyle \{-\frac{1}{2},1,2\}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.